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ABSTRACT 
On the Asymptotic Behavior of Discrete 
Dynamical Systems Using Bi-shadowing 

Properties  

Osama A. Al-khatatneh  

Mu'tah University, 2016 

In this thesis, we study the asymptotic properties of discrete dynamical 
systems given by a continuous mappings on a metric space. 
 In particular, we show that if  a system has the shadowing property, then 
any system conjugated with it has the same property. Also, we investigate 
the relationship of shadowing property between the product system and its 
subsystems. We generalize these results in the context of bi-shadowing 
property for dynamical system under certain conditions. 

 

  

 

 

 

 

 

 

 

 

 

 



    الملخص
                                        التقاربي للأنظمة الدینامیكیة المتقطعة السلوك

  الثنائیة الظلباستخدام خصائص 

  أسامة عبد الوھاب الختاتنة

  2016جامعة مؤتة، 

الأطروحة، نقوم بدراسة الخصائص التقاربیة للأنظمة الدینامیكیة المتقطعة و  ھذه في 
  معرفة على نظام متري.والمتولدة من اقترانات متصلة 

ا كان النظام یحقق خاصیة الظل، فأن أي نظام مترافق لھ إذ ھأن أثبتنا بشكل خاص،
یحقق نفس الخاصیة ونبحث أیضا علاقة خاصیة الظل بین النظام الضربي و الأنظمة 

لخاصیة ثنائیة الظل للأنظمة الدینامیكیة تحت لالنتائج  ھذهھ. كما قمنا بتعمیم منالجزئیة 
  شروط معینة.    

 

 

 

 

 

 

 

 

 

 

 



CHAPTER ONE 
Introduction 

 
1.1 Statement of the problem 
As a simple mathematical model that describes the number of  bacteria in a 
population is the function   ( ) = 2 , where   denotes the number of 
bacteria in the population and  ( ) denotes the number of bacteria one day 
later. Clearly the population doubles every day. If  we assume that a 
population has started with 10  bacteria then according to the rule above, 
the population has  (10 ) = 2 × 10  bacteria after one day and    (10 ) =  (2 × 10 ) = 4 × 10  after two days. Note that after three 
days, the population has   (10 ) = 8 × 10  bacteria, and so on. 
This simple model contains about states that represent the number of 
bacteria in the population, in which it is changing with time under the rule 
described above, that is   =  (    ) = 2    . 

Here n represents the time (day in our example) and    represents the 
number of bacteria at time n. 
This model describes a dynamical system, which consists of a set of states 
and a rule  that   describes  the  current state in  terms of previous one. 
If the rule is applied at discrete times, then the system is called discrete 
time dynamical system. The counterpart of this system is the so called 
continuous time dynamical system which can be obtained by taking the 
limit of discrete time system over a small time. Generally, iterations of 
continuous function generates a discrete time system, while, a differential 
equation generates a continuous time system in terms of the flow map 
defining the solution of the differential equation. 
In this thesis we deal with discrete-time dynamical system which is very 
interesting and exciting topic in mathematics which, in many cases, has 
been discovered only in the last few decades. The theory of dynamical 
systems is a branch of mathematics that attempts to understand processes in 
motion. Such processes occur in all branches of science. For example, the 
motion of the stars and the galaxies in the heavens is a dynamical system, 
one that has been studied for centuries by thousands of mathematicians and 
scientists. The stock market is another system that changes in time, as is the 
world weather. The changes of chemicals undergo, the rise and fall of 
populations, and the motion of a simple pendulum are classical examples of  
dynamical systems in chemistry, biology, and physics, respectively.  



There are several references investigating and studying dynamical systems, 
for example ( Devaney, 1989), (Irwin, 1980), (Nitecki, 1971), and (Palis 
and de Melo, 1982). 
One of the most rapidly developing components of the global theory of 
dynamical systems is the theory of pseudo-orbit tracing property, or 
shadowing property. Pseudo-(or approximate-) trajectories arise due to the 
presence of round-off error, method error, and other error in computer 
simulation of dynamical systems. Consequently, in numerical modeling we 
can compute a trajectory that is coming very close to an exact solution and 
the resulting approximate solution will be pseudo-trajectory. Section (2.3) 
in this thesis presents  mathematical definitions and some important 
theorems regarding shadowing property of dynamical systems. 
 Another type of shadowing properties ( inverse shadowing properties) is 
related to the following problem: given a family of mappings that 
approximate the  defined  mapping for the  dynamical  system considered, 
can we find for a chosen exact trajectory, a close pseudo-trajectory 
generated by the given family? such a property were considered by many 
authors, for example Corless and Pilyugin (1995) and Palmer (2000). 
The main subject of this thesis is to study the bi-shadowing property, which 
is more general property than shadowing and inverse shadowing. It was 
introduced by Diamond et. al. (1995) see also Diamond et. al. (2012). Bi-
shadowing was considered for set-valued systems with an application to 
iterated function system by Al-Badarneh (2014) and for infinite 
dimensional dynamical systems by Al-Nayef (1997).  
 
1.2 Motivation 
This work is motivated by the following reasons: 
1) As it is well-known that we can solve explicitly only very few 
differential equations and thus qualitative properties of solutions should be 
considered. So, long-term behavior of solutions of ordinary differential 
equations should be studied using dynamical systems techniques. 
2) In the last few decades, the interest in the study of dynamical systems 
has increased rapidly. Partly by the discovery of the chaotic properties of 
dynamical systems and by the ongoing research which has a rich and many 
new properties in the behavior of the systems. 
3) Bi-shadowing is an extension to the concept of shadowing and it is 
usually used in the context of comparing computed trajectories with the 
true trajectories of the dynamical system. The motivation to study systems 



with these properties is that numerical simulation of dynamical systems 
always producing pseudo trajectories. Thus, systems with the shadowing 
property are precisely the ones in which numerical simulation does not 
introduce unexpected behavior,  in the sense that simulated trajectories 
actually follow real trajectories.  It is clear, the study of such properties is 
very important for the theory of perturbations of dynamical systems. 
 
1.3 Synopsis of the Thesis 
Following this brief  introductory chapter, in Chapter 2 we give some 
definitions and preliminaries needed throughout this thesis. We give the 
notations of  hyperbolicity and pseudo orbit tracing property or shadowing 
property and study how it is related to hyperbolicity. More precisely we 
prove that the hyperbolic linear homeomorphism of a Banach space has the 
shadowing property. Also, we prove that if the system ( ,  ) is 
topologically conjugate to ( , ), then   has the shadowing property if and 
only if    has the same property. Moreover, we proved more results 
regarding the concept of shadowing property. 
In Section (3.1) of Chapter 3, we discuss asymptotic behavior of dynamical 
systems generated by continuous almost contractive single-valued mapping 
defined in a metric space and proved that such maps have the bi-shadowing 
property. In Section (3.2), we explore more results on bi-shadowing and 
introduce a definition of new property of bi-shadowing. Also, we discuss 
the relationship of bi-shadowing property between the product system and 
its subsystems. 
Finally, we prove that the bi-shadowing property is invariant under 
topological conjugacy. 
 
1.4 Contributions 
The following Theorems are proved in this thesis as an original results: 
Theorem 3.2.1, 3.2.2, 3.2.3 and 3.2.4 . 
 
 
 

  
  

CHAPTER TWO  
Basic Properties of Dynamical Systems 



In this introductory chapter, we give some basic concepts and  definitions 
that we need throughout the thesis. We will also discuss important  
properties of dynamical  systems, such as, hyperbolicity and shadowing. 
 A metric space is a pair ( ,  ) consists of a non empty set   and a function  :  ×  → [0,∞) such that: 
1) For all   ,      ,  ( , ) ≥ 0 with equality if and only if   =  . 
2) For all   ,      ,  ( ,  ) =  ( ,  ). 
3) For all   ,   ,         ( , ) ≤  ( ,  ) +  ( ,  ). 
 
A metric space ( ,  ) is said to be complete if every Cauchy sequence in    
converge to a point in  . 
A homeomorphism is a continuous bijective mapping  : →   whose 
inverse is continuous. If both   and     are differentiable, then a 
homeomorphism is said to be diffeomorphism. 

 2.1 Dynamical systems 
The modern theory of dynamical systems has  relatively short  history. It 
begins  with the work of  Hennri Poincaré, who revolutionized the study of 
nonlinear differential equations by introducing the qualitative techniques. 
Therefore, geometrical and topological properties are used to obtain global 
properties of solutions of differential equations rather than using the 
analytic method of obtaining explicit solutions of the differential equations. 
Poincaré point of view was adopted and furthered by Birkhoff in the first 
part of the twentieth century. Birkhoff realized the importance of the study 
of mappings arising from differential equations and the relation between 
the behavior of the dynamical systems generated by these mappings and the 
original systems. 
A dynamical system is usually classified as either a continuous-time 
dynamical system or a discrete-time dynamical system. Recently, however, 
discrete dynamical systems have received considerable attention. This does 
not mean that continuous systems declined in importance. Rather, 
mathematicians study discrete systems with an eye toward applying their 
results to the more continuous case. 
A continuous-time dynamical system on a topological space X is a 
continuous  map   :  ×  →   such that, for all   ∈   and,  for all s, t ∈     ( +   ,  ) =  (  ,  (  ,  )),  and 



                                            (0 ,  ) =  . 

Example 2.1.1 (Irwin, 1980): For any  , the trivial dynamical system is 
defined by   ( ,  ) =  . 
Example 2.1.2 (Irwin, 1980):  For  =  ,  ( ,  ) =     defines a 
dynamical system on  . 
As an interesting example of a continuous-time dynamical system, let   be 
an open subset of    and  : →    be  a differentiable function. Consider 
the differential equation 

                                        ʹ =  ( ),                                                (2.1) 
 

For        and      (  ), let  ( ,   ) be the unique solution of the equation 
(2.1) with the initial condition  (0) =   , where  (  ) is the maximal 
interval for which the solution  ( ,   ) exist and unique with  (0) =   . 
The function  ( ,  ),      ,      ( ) satisfies the conditions mentioned 
above  and therefore is a continuous-time dynamical system. It is called a 
flow of the differential equation (2.1). More examples of continuous time 
dynamical systems can be obtained by considering the flow of functional 
differential equations and partial differential equations. In these two 
examples, the state space is infinite dimensional, and thus the dynamical 
systems are considered as infinite dimensional. 
     The space    in the preceding definition is called the phase space of    , 
which could be a Banach space, or even a metric space. Let    be a 
dynamical system of  . Given  t ∈  , we define the map     :  →   by     ( ) =  ( ,  ), which is called the time-t map of    . If the set of real 
numbers    is replaced by the set of integers Z , then    is called a discrete-
time dynamical system, which is completely determined by   , which is a 
homeomorphism on  . The main goal of the study of dynamical systems is 
to understand the long term behavior of states in a system for which there is 
a deterministic rule for how a state evolves. In the recent years, the modern 
theory of dynamical systems has focused on a discrete-time systems 
generated by a diffeomorphism  f  representing the time-1 map generated 
by solution of ordinary differential equation. 
 
For a continuous mapping  : →   which is identified with a discrete-time 
system generated by iterations of   such that     =  (  ) so   =   (  ) 



where   =  ○…○    is the composition of    with itself     times, with   = (   )| | if   < 0 and   is invertible.  
The forward trajectory from a point        is the set {  (  ) ∶  ≥ 0}. If   is 
invertible, then the backward  trajectory {  (  ):  ≤ 0}. The whole 
trajectory is the set {  (  ):       }. If   is not invertible then we sometimes 
make choices and construct    ,    , … where  (    ) =   ,  < 0. 
Generally, a trajectory of the discrete-time dynamical system generated by 
a  mapping   is a  finite or infinite  sequence {  } ⊂    satisfying     = (  ) for  = −  , … ,−1, 0 , 1 , … ,    where 0 ≤   ,  ≤ ∞. 
 A point    is called a periodic point of period  n provided   (  ) =    and   (  ) ≠    for 0 <  <  . (Note that n is the least period.) If    has period 
one then it is called a fixed point. If    is a point of period n, then the 
forward trajectory of   , is called a periodic trajectory. Finally , a point     
is eventually periodic of period n  provided that there exists an  > 0 such 
that     (  )=   (  ), so     (  ) =   (  ) for   ≥  , and   (  ) is a 
periodic point. 

2.2 Hyperbolic dynamical systems 
The concept of hyperbolicity played an important role in the development 
of the theory of dynamical systems. Hyperbolic sets for diffeomorphisms 
was studied by Anosov (1967), Smale (1967), and Hirsch, Pugh and Shub 
(1977). Hyperbolicity is a characteristic property for complicated behavior 
of both systems discrete-time and continuous-time as well. 
The concept of a hyperbolic set is a natural generalization of hyperbolicity 
of a fixed point to more general invariant sets. A set  ⊂   is said to be 
positively invariant if  ( ) ⊂  , negatively invariant if    ( ) ⊂    and 
invariant  if  ( ) =  .  
Let ( , ‖. ‖) denotes a Banach  space over  R. A fixed point    of a 
diffeomorphism mapping  : →   ( ⊂   open) is said to be hyperbolic  if 
the derivative map   ( ) is hyperbolic, i.e, has no spectral values in the 
unit circle of the complex plane. For non-invertible continuous linear 
mappings we have the following definition taken from (Lani-Wayda, 
1995): 
Definition 2.2.1: A continuous linear mapping  : →   is called 
hyperbolic when it satisfies the following two equivalent conditions: 
i) The spectrum σ( ) is disjoint from the unit circle. 
ii) There exist positively invariant (with respect to  ) closed subspaces     
and   , that is with  (  ) ⊂   and  (  ) ⊂   , such that  =   ⊕    



and constants    ,    > 0 ,    ,  ∈ (0,1) such that the map  f |   is a 
homeomorphism on    and for each non-negative integer m  

║(  f |  ) ║ ≤           and  ║(  f |  )  ║ ≤       . 
The proof that i) and ii) are equivalent can be found in (Lani-Wayda, 
1995). 
The subspaces    and     are called the stable and unstable subspaces, 
respectively, for the  hyperbolic linear mapping  f  and can be characterized 
by: 
                         = { ∈  : {   }     is a bounded sequence} 
and   = { ∈  :∃ bounded sequence {  }    with  (    ) =    for n ≤ 0 and   =  }. In addition, the corresponding projection defined by   : →    
and    : →    , can be given by: P =       ∫| |     (  −     )     , 

where  I  denotes the identity mapping on   and    =  −   . This 
representation of  P  is given in (Riesz and Nagy, 1987). 
Here, we present another definition of a hyperbolic set K , which was 
introduced by Steinlein and Walther in (1989). Let  : →   be a mapping, 
where   is an open subset of    and L( ) denotes the space of continuous 
linear maps  →  . 
Definition 2.2.2:  A hyperbolic set for  f  is a positively invariant set  ⊂   
together  with a bounded, uniformly  continuous mapping     ∶  → L( ),  ↦     with constant  ≥ 1,  ∈ (0,1) such that    :=      ,    ≔  −     
and     ≔       ( ∈  ),    is a projection satisfying the following 
properties: 
H1)    (   ) ⊂   ( )  
H2)  =   ( ) +    (   )  
H3) the inequalities 
                    |     ≤        and        ( )     |     ≥          hold. 
2.3 Shadowing Properties 
The numerical simulation of discrete-time dynamical systems using 
arithmetic algorithms generates round-off and truncation errors. This 
affects naturally the value of each individual  iteration of the map that 
generates the system. Therefore, it is crucial to find a convenient way to 
confirm that numerical calculations, and hence the approximated system, 



reflect the behavior of the original system. This is usually done in the sense 
whether to any given approximated trajectory there always exist a true 
trajectory of the system nearby. This property is known as the shadowing 
property. 
     The idea of shadowing for hyperbolic dynamical systems was originally 
given by Anosov (1967), see also Bowen (1970). Since then,  shadowing 
plays an important role in the investigation of the theory of dynamical 
systems for the continuous time systems and later for discrete time systems. 
Sinai (1972) stated the Shadowing Lemma for Anosov diffeomorphisms, 
the proof  being a variation ideas from Anosov (1967). The first formal 
statement of the shadowing lemma for more general diffeomorphisms is 
given in (Bowen, 1975). However, Bowen states that the proof is already 
contained in the proofs of results in (Bowen, 1970) concerning the 
specification property. Conley (1980) also used shadowing lemma to show 
that if the chain recurrent set of a diffeomorphism is hyperbolic, then the 
periodic points are dense in the chain recurrent set. Walter (1978) and 
Lanford (1983) used it also to prove topological conjugacy results for 
perturbations of diffeomorphisms with hyperbolic set. For flow different 
versions of the shadowing lemma have been proved in (Frank and Selgrade 
, 1977), (Nadzieja, 1991), (Katok and Hasselblatt, 1995), (Coomes, Kocak 
and Palmer, 1995) and (Pilyugin, 1997).   
The most common version of the  shadowing lemma is a basic result in the 
theory of dynamical systems and it says that a dynamical system defined by 
a diffeomorphism on a compact space has the shadowing property on its 
hyperbolic set. In this section we give a proof due to (Ombach, 1993), see 
also (Katok, 1975), of the shadowing lemma for discrete systems in the 
simplest but nontrivial situation. Namely, we show that any linear 
homeomorphism of a Banach space, which is hyperbolic has also the 
shadowing property. The proof can be extended for noninvertible maps and 
for continuous-time systems. 
     Let ( ,  )  be a metric space, and let  : →   be a continuous map. 
Recall that an orbit (trajectory) of   is a sequence {  }    satisfying  

                                                 =  (  ),                                               (2.2) 
for all   ∈  . If   is a homeomorphism and      , the orbit of the point   is 
the sequence {  ( )}   . If a sequence {   }    satisfies the above equality up 
to some perturbation we say it is a pseudo-orbit.  More precisely, we say 
that a sequence {   }    is a δ-pseudo-orbit if   ( (  ),     ) <   , where δ > 
0. Now we say that a map   has the pseudo-orbit tracing property, or the 



shadowing property if for every   > 0 there exist  δ > 0 such that any δ-
pseudo-orbit  {   }    is   -traced or  -shadowed by some orbit {   }   ,  i.e  (  ,  )  <   , for all  ∈  . 
Shadowing Lemma(Ombach, 1993): A hyperbolic linear homeomorphism 
of a Banach space has the shadowing property.  
Let ( , ‖. ‖ ) be a Banach space , and  : →   a linear   continuous map. If    is hyperbolic, that is the spectrum of    is disjoint from the unit circle in 
the complex plane. It follows from (Irwin, 1980) that there exist a 
decomposition  =    ⊕    and  =   ⊕    , where   :   →    are linear 
continuous ,  =1, 2, and there exist norms ‖. ‖  on   ,  =1, 2 such that:   
(i)  ‖  ‖ < 1,    is a homeomorphism and        < 1.  
(ii) the norm ‖. ‖ defined by ‖ ‖ =  ‖  ‖ +  ‖  ‖  is equivalent to the 
original norm of X . If    is a homeomorphism then so is    .  
Actually, this is the definition of hyperbolicity that Ombach (1993) used to 
prove the shadowing lemma in which the following two preliminary 
lemmas are given without proofs. Although the proofs are straightforward, 
we shall provide a proof for them by modifying a proof  for similar results 
in nonautonomous systems given in (Thkkar and Das, 2014 b). 
Lemma 2.3.1 (Ombach, 1993): Let (  ,  ),  =1, 2, be metric spaces and   :  →    and   :  →    be two maps. Let  =   ×    be equipped with 
a metric generating the product topology. Let  =   ×    be a map on   
defined by  (  ,   ) =    (  ),   (  ) . Then   has the shadowing property 
if and only if    and    do.                             
Proof: Define metric   on the product space   ×    by    (  ,  ), (  ,  ) = max{  (  ,   ),   (  ,  )}, 
for all (  ,  ), (  ,  )     ×   .  
Given  > 0. Since   has the shadowing property, then there exist  > 0 
such that for every  -pseudo trajectory of    can be   -traced by a true 
trajectory of  . Let {   }    and {   }    are  -pseudo trajectories of    and    
respectively. Hence   (  (  ),     ) <   and   (  (  ),    ) <   which 
implies by the definition of    that 

   ((  ×   )(  ,  ), (    ,    )) < δ,      for   ∈  . 

Thus, {(  ,  )}    is a  -pseudo trajectory of   . But   has the shadowing 
property, so there exist a true trajectory {(  ,  )}    of    such that 

                          (  ,  ), (  ,  ) <  ,       for  ∈  .                   



which implies 
                            (  ,   ) <    and    (  ,  ) <          for  ∈  .                   

for all   ∈  . That is both    and    have the shadowing property. 
Conversely, Given  > 0. Then since    and    have the shadowing 
property, then there exist   > 0 and   > 0 such that every   -pseudo 
trajectory of     and    -pseudo trajectory of     can be  -traced by a true 
trajectory of     and     respectively. Let  = min {  ,   } and {(  ,   )}    be  -pseudo trajectory of   . Hence  ((  ×   )(  ,  ), (    ,    )) < δ,       for   ∈  , 
which implies,   (  (  ),     ) <  <     and    (  (  ),    ) <  <   . 

Thus, there exist a true trajectories {   }    of     and {   }    of     such that 

                        (  ,  ) <    and    (  ,  ) <  ,         for   ∈  .     

Hence by the definition of    implies 

                                            (  ,  ), (  ,  ) <  ,        for  ∈  .                   

Thus   has the shadowing property.                                                             □ 
A sketch of  the proof of the following lemma is given in (Thkkar and Das,  
2014 a)  for the nonautonomous case,  here we provide a detailed proof.  
Lemma 2.3.2 (Ombach, 1993): Let   be a homeomorphism of a metric 
space ( , ) such that   and its inverse     are uniformly continuous. Then   has the shadowing property if and only if    does. 
proof: Given  > 0. If    has the shadowing property, then there is δ > 0, 
so that for each {  }    ⊂   with 

                                        (f (  ),     ) < δ     for  ∈  ,                             (2.3)  

there exists a point  ∈   such that 

    (  ( ),   ) <        for  ∈  . 
By uniform continuity we choose    > 0 so that  ( ,  ) <     implies  ( ( ),  ( )) < δ. Let {  }    ⊂   be a   -pseudo trajectory of    , that is 
satisfy the inequality 

                                    (   (  ),     ) <          for  ∈  . 



Then 
                           ,  (    ) =         (  ) ,  (    ) < δ       for  ∈  . 

Thus, the sequence {  :   =    } is a  -pseudo trajectory of   and satisfies 
the relation (2.3). Since   has the shadowing property, then there exists a 
point  ∈   such that 

               (   ( ),  ) =  (   ( ),    ) =  (  ( ),   ) <       for  ∈  . 

For the proof of the other side it is enough to replace     by  .                  □ 
Proposition 2.3.1 (Ombach, 1993) Let   be a complete metric space and  : →   a contraction, i.e there exist  a constant  0 ≤   < 1 such that    ( ),  ( ) ≤    ( , ) 
for all  ,  ∈  . Then   has the shadowing property. 
Proof: Fix  > 0 and define  = (1−  ) . Let x= {  }    be a δ-pseudo 
trajectory. Define a metric space   by  = { :  = {  }   , (  ,  ) ≤  } 
with metric  ( ,  ) = sup { (  ,   ):      }. 

It is easy to see that ( , ) is complete. Consider a map   defined for       
by  ( ) =  (    )      for      . 
For all       we have  ( (    ),   )  ≤  ( (    ),  (    )) +  ( (    ),   )  
                                              ≤    (    ,     ) +   

                                              ≤    + (1−  ) =   

which means that  ( ) ⊂  . Also, we can easily see that   is contraction 
with contraction constant  , since    ( ), ( ) = sup { ( (    ), (    )):     } 

                                                  ≤   sup { (    ,     ):     } 

                                                  =   sup { (  ,   ):     } ≤   ( ,  ). 



By the Banach Contraction Principle,   has a fixed point  = {  }       
such that  ( ) =   that is    =  (    ) and  (  ,  ) ≤   since  ϵ . Thus, 
the trajectory   is  -shadows the  -pseudo trajectory {  }   . This 
completes the proof.                                                                               □ 
Proof of Shadowing Lemma: If a linear homeomorphism   is hyperbolic, 
then  =   ⊕   , where both     and      are contractions. By Proposition 
2.3.1 both     and      have the shadowing property. Moreover, Lemma 
2.3.2 implies that    has the shadowing property and finally by Lemma 
2.3.1   has the shadowing property. This completes the proof of the 
shadowing lemma.                                                                                  □ 
Let ( ,  ) and ( ,  ) be two metric spaces and let   : →   and  :  →   
be two maps on   and   respectively. We say that   and    are 
topologically conjugate if there exist a homeomorphism  ℎ: →   such that ℎ ○  =  ○ ℎ. In particular, if  ℎ and ℎ   are uniformly continuous then   
and    are said to be uniformly conjugate. 
Next, we modify the proof of Theorem 22 in (Thkkar and Das, 2014 a) for 
nonautonomous system to prove the following theorem.  
Theorem 2.3.1: Let ( ,  ) and ( ,  ) be metric spaces and let   : →   
and  : →   be two continuous maps. If   and   are uniformly conjugate 
then    has the shadowing property if and only if    has the shadowing 
property. 
Proof: Given  > 0, and let ℎ: →   be a homeomorphism so that     ○ ℎ =ℎ ○  . Applying the uniform continuity of  ℎ implies that there exists 0 <   <   such that, for any    ,       with   (  ,  ) <     
,   (ℎ( 1), ℎ( 2)) <  . As   has the shadowing property there exists   > 0 
such that every   -pseudo trajectory of    is   -traced by some point in     . 
Noting the fact that ℎ   is uniformly continuous, there exist  0 < δ <    
such that, for any   ,        with   (  ,   ) < δ,   (ℎ  (  ),ℎ  (  ) <   . 
Now we claim that every δ-pseudo trajectory of    is  -traced by some 
point of   . In fact, for any δ-pseudo trajectory {  }     of   , applying   ( (ℎ  (  )),ℎ  (    )) =   (ℎ  ( (  )),ℎ  (    )) <   . 
It follows that {  }    = {ℎ  (  )}     is a   -pseudo trajectory of   . Then 
there exist        such that {  }     is   -traced by  . This implies that   (  (ℎ( )),  ) =   (ℎ(  ( )),ℎ(ℎ  (  ))) <  . 
Thus, the proof of this theorem is complete.                                          □ 
 



2.4 Bi-shadowing property 
The shadowing or pseudo orbit  tracing property of dynamical systems as 
we mentioned in the last section is often used to justify the validity of 
computer simulation of the system, asserting that there is a true trajectory 
of the system close to the computed pseudo trajectory. From this it is often 
concluded that the behavior of computed system reflects that of the original 
system. 
The inverse question as to whether every true trajectory can be shadowed 
by some pseudo trajectory is of no less practical importance for complete 
understanding the relationship between true trajectories and pseudo 
trajectories. This is the idea of inverse shadowing. While any pseudo 
trajectory for some δ is in principle possible, in practice only those that 
belong to some particular class τ may in fact occur. Typically, only general 
characteristics of such pseudo trajectories will be known rather than a 
complete definition of τ itself. The problem of inverse shadowing with 
respect to such class τ is, nevertheless, still meaningful: Can every true 
trajectory of the given system  : →   be shadowed by some trajectory 
from τ ? For instance, in the classical shadowing (direct shadowing) this 
class consists of all pseudo trajectories of the given system, while in 
inverse shadowing a natural and convenient class consists of trajectories of 
all continuous mappings    that are sufficiently close to  . 
      Let  =    and let Tr( , , δ) denote the totality of finite or infinite δ-
pseudo trajectories of   belong entirely to  ⊆  . Since a true trajectory 
can be regarded as a  = 0 pseudo trajectory, the set of all finite or infinite 
trajectories which belong entirely to   will be denoted by Tr( , , 0). 
Obviously a true trajectory is also a  -pseudo trajectory for any  > 0, so 
Tr( , , 0) ⊂ Tr( , ,  ) where the inclusion is strict because obviously not 
every pseudo trajectory is a true trajectory. For the distance between the 
maps   and   on   we will use ‖ −  ‖ = sup     ‖ ( ) −  ( )‖. 

Definition 2.4.1 (Al-Nayef, 1997): A dynamical system generated by a 
mapping  : →   is said to be bi-shadowing on a subset   of    with 
positive parameters   and   if for  any  given  pseudo-trajectory   = {  }   
Tr( , , δ) with 0 ≤  ≤   and any continuous mapping  : →   satisfing 

                                               + ‖ −  ‖ ≤                                        (2.4)  



there exists a trajectory x = {  }   Tr ( , , 0) such that 

                                     ‖  −   ‖ ≤  ( + ‖ −  ‖ )                             (2.5) 
for all n for which   is defined. 
      Bi-shadowing includes the definition of  both the direct shadowing and 
the inverse shadowing: taking  =   in (2.4) and (2.5) gives   -shadowing 
of any  -pseudo trajectory      Tr( , , δ) by a true trajectory x   
Tr( , , 0), while inverse shadowing follows because a trajectory  x   
Tr( , , 0) can always be found which shadows a  given true  trajectory     
Tr( , , 0), considered here as the  -pseudo trajectory with   δ = 0. 
Cyclic or periodic behavior is of particular importance in dynamical 
systems. A trajectory x= {  }       Tr( , , 0) is called a cycle of period N if   =   . Analogously, a pseudo trajectory of  = {  }       Tr( , , δ) will 
be called a δ-pseudo trajectory of period N if |  −   | ≤  . Let  ( , ,  ) ⊂ Tr( , ,  ) denoting the totality of  -pseudo cycles of any  period  
belonging  entirely to the subset   of  , with  ( , , 0) ⊂ Tr( , , 0) 
denoting the totality of proper cycles of any period which are contained 
entirely in  . Obviously  ( , , 0)  ⊂   ( , ,  ) for every  > 0. 
Definition 2.4.2  (Al-Nayef, 1997):  A dynamical system generated by a 
mapping  : →   where   is an open subset of    is said to be cyclically 
bi-shadowing on a subset   of   with positive parameters   and   if for 
any given pseudo-cycle      ( , ,  ) with 0 ≤  ≤   and any continuous 
mapping  : →   satisfying (2.4) there exists a proper cycle x    ( , , 0) 
of period N equal to that of    such that (2.5) holds for  = 0,1 ,…, N. 
Note that the cycle x here is required only to be in   rather than in the 
subset   . 
                                       
 
 
 
 
 
 
 
 
 

 
 



CHAPTER THREE 
Bi-Shadowing Properties of Discrete Systems 

 
In this chapter, we discuss the bi-shadowing properties satisfied by discrete 
systems under certain conditions, we also present and prove the main 
results of the thesis. 
A metric space ( ,  ) is called compact if  for every covering  (  )    of    by open sets (open covering) there exist a finite subfamily (  )    
( ⊂   and finite) which is a covering of   . 
Throughout this chapter, we assume ( , ) to be a compact metric space.  
 
3.1 Bi-Shadowing of Almost Contraction. 
In this section we state and prove some theorems regarding bi-shadowing 
contractions and almost contractions. 
A mapping  : →   is called ( ,  )-contraction or almost contraction, if 
there exist constants 0 ≤   < 1 and  ≥ 0 such that  

               ( ),  ( ) ≤     ( , ) +      ,  ( )        for all  ,      .  

The  almost contraction condition above implicitly includes the following 
dual one 

              ( ),  ( ) ≤    ( , ) +      ,  ( )        for all  ,      . 

Obviously, any q-contractive is almost contraction with  =   and  = 0. 
We now give the definition of the concept of bi-shadowing in the context 
of a general metric space. 
Definition 3.1.1 (Al-Badarneh, 2015 b): A continuous mapping  : →  , 
where   is a metric space, is called bi-shadowing with respect to a 
comparison class  ( ) consisting of continuous mappings on   and with 
positive parameters   and   if for any given  -pseudo trajectory {  }      of   with 0 ≤  ≤   and any      ( ) satisfying    + sup     ( ( ),  ( )) ≤   

there exists a true trajectory {  }      of   such that 

   (  ,  ) ≤  ( + sup     ( ( ),  ( ))) ,    =0,1, 2, … . 



Theorem 3.1.1 (Al-Badarneh, 2015 b): Let ( ,  ) be a metric space and  : →   a  -contractive mapping on  , that is, there exists a constant 0 <  < 1 such that  (( ( ),  ( )) ≤    ( ,  ),    for all  ,      . 

Then   is bi-shadowing on   with respect to the comparison class  ( ) and 
with positive parameters   and   given by 
                                               = 21−     and   β = (1−  ).                                                  (3.1)  
Proof: Fix  < (1−  )/2 . Let {  }      be a given  -pseudo trajectory of    
satisfying  ( (  ),    ) <           =0,1, 2, … 
and let  : →   be any continuous mapping such that sup       ( ),  ( )  ≤ (1−  )/2. 

 It follows that  + sup       ( ),  ( ) ≤ (1−  )/2 + (1−  )/2 =  . 

Consider a true trajectory {  }     for the mapping   such that  (  ) =      
for  = 0, 1, 2, … and satisfying the relation 
                      (  ,   ) ≤ 11−  (  + sup     ( ( ),  ( )))                                     (3.2)                   
 
For  = 1 we have: 
                 (  ,   ) ≤  ( (  ),  (  )) +  ( (  ),  )  
                                ≤    (  ),  (  ) +    (  ),  (  ) +  ( (  ),   ) 

                                ≤ ( + sup     ( ( ),  ( ))) +   (  ,   ). 

 
For  =2 we have: 
              (  ,  ) ≤  ( (  ),  (  )) +  ( (  ),  (  )) +  ( (  ),  ) 

                              ≤ (1 +  ) ( + sup     ( ( ),  ( ))) +    (  ,  ). 

 
 



For  =3 we have: 
              (  ,  ) ≤  ( (  ,  (  )) +  ( (  ),  (  )) +  ( (  ),   )  
                           ≤ (1 +  +   )( + sup     ( ( ),  ( ))) +    (  ,  ). 

By induction, we obtain 

       (  ,  ) ≤ (1 +  +   + ⋯+     )( + sup    ( ( ),  ( ))) +    (  ,  )                                                                                                                              
                    ≤       ( + sup     ( ( ),  ( ))) +   (  ,   ). 
Since  < 1 and using the condition (3.1) and(3.2) we have  (  ,  ) ≤ 21−   ( + sup     ( ( ),  ( ))) 

         =  ( + sup     ( ( ),  ( ))). 
Thus, the proof of this theorem is complete.                                                 □                                    
Theorem 3.1.2 (Al-Badarneh, 2015 b): Let ( ,  ) be a metric space and  : →   a continuous almost contractive mapping, that is there exist 
constants 0 <  < 1 and  ≥ 0 such that 
                 ( ),  ( ) ≤   ( ,  ) +     ,  ( )       for all  ,      . 
Assume that  +  < 1, and that   is satisfying the following conditions: 
i) For every  -pseudo trajectory {  }   ∞  ⊆   of    with  < (1−  −  )/2 
the following series is convergent:   ∶= ∑  ( (  ),   )    . 
ii) For every  continuous mapping   : →   satisfying  sup      ( ( ),  ( ))  ≤  (1−  −  )/2, 

the  following  inequality  is satisfied: 

                                       <  + sup    ( ( ),  ( )).                                   (3.3) 

Then   is bi-shadowing on   with respect to the class  ( ) and with 
parameters   and   given by 

                       = 21 −  −      and    = (1−  −  )                                   (3.4)     
 



Proof: Fix  < (1−  −  )/2 and {  }     be a  -pseudo trajectory of    
satisfying 

      ( (  ),    ) <             =0,1, 2, … . 
Let also  : →   be any continuous mapping such that   ∶= sup      ( ( ),  ( )) ≤ (1−  −  )/2 

It follows that  + sup     ( ( ),  ( )) ≤  . 

We consider the true trajectory {  }     for the mapping    such that     =  (  ) for  = 0,1, 2, … . We use the relation (3.3) to choose     with 
the following property:                   (  ,  ) +   1−  −  ≤  +   1−  −                                           (3.5) 

For the case  = 1 we have: 
                                  (  ,  ) ≤    (  ),  (  ) +  ( (  ),  ) 

                              ≤    (  ),  (  ) +    (  ),  (  ) +  ( (  ),  ) 

                              ≤ ( +   ) + ( +  ) (  ,  ) +      ,  (  ) . 
 
For the case  = 2 we have: 
            (  ,   ) ≤    (  ),  (  ) +    (  ),  )  
                            ≤ ( +   ) +   (  ,  ) +    (  ,  ) +     ,  (  )   
                            ≤ ( +   ) + ( +  ) (  ,  ) +      , (  )  
                            ≤  1 + ( +  ) ( +   ) + ( +  )  (  ,  ) 
                                                      + ( +  )    ,  (  ) +      ,  (  ) . 
 
Similarly, for  = 3 we have: 
          (  ,  ) ≤  (  ,  (  )) +  ( (  ),   ) 

                          ≤ ( +   ) + ( +  ) (  ,  ) +      ,  (  )  
                           ≤ (1 + ( +  )+( +  ) )( +   )+( +  )  (  ,  ) 
                      + ( +  )     ,  (  ) +  ( +  )    ,  (  ) +      ,  (  ) . 
 



In general, we obtain 
                 (  ,  ) ≤ ( +   )∑ ( +  ) + ( +  )  (        ,  )  
                                                                                  +∑  ( +  )      (  ,  (        )).  
Note that, if we write ∑  ( +  )         ,  (  )       = ∑               , 
where   =     ,  (  ) , and   =  ( +  )   for  = 0,1,2, … . If   = ∑               ,  =1, 2, …  then Theorem 8.46 in (Apostol, 1978) implies 
that the series ∑        is convergent and ∑       =        .  Therefore, by the 
condition  (3.4) and  (3.5)  and since  +  < 1 we have  

             (  ,  ) ≤ ( +   )∑ ( +  ) + ( +  )      (  ,  ) + ∑                                       ≤  +   1−  −  +  (  ,   ) +   1−  −   

                               ≤  +   1−  −  +  +   1−  −  =  ( +   ). 
Thus, the proof of this theorem is complete.                                          □ 
Definition 3.1.2 (Berinda, 2004): A mapping  : →   is called Kannan 
mapping if there exists a constant 0 <  < 1/2 such that 

            ( ),  ( ) ≤      ,  ( ) +    ,  ( )  ,  for all  ,      .         (3.6) 

Definition 3.1.3 (Berinda, 2004): A mapping  : →   is called Chatterjea 
mapping if there exists a constant 0 <  < 1/2 such that 

            ( ),  ( ) ≤      ,  ( ) +    ,  ( )  ,  for all  ,      .          (3.7) 
It was shown in (Berinda, 2004)  that Kannan mappings and Chatterjea 
mappings are almost contractions. 
Theorem 3.1.3 (Berinda, 2004): Let ( , ) be a metric space. Then 
a) A Kannan mapping  : →   with 0 <  < 1/2 is almost contraction          
with constants                                       =  1−       and     = 2 1−   .                                       (3.8)    
 
b) A Chatterjea mapping   : →   with 0 <  < 1/2 is almost contraction 
with constants                                 =  1−       and     = 2 1−   .                                          (3.9) 



Theorem 3.1.4 (Al-Badarneh, 2015 b): Let a continuous mapping  : →   
be a Kannan map- ing such that the conditions  i)  and  ii) of Theorem 3.1.2 
are satisfied. Then   is bi-shadowing on   with respect to the class  ( ) 
provided that  < 1/4 and with parameters   and   given by:                         = 2− 2 1− 4       and      = 1− 4 1−                                        (3.10) 

Proof: If   is a continuous Kannan mapping satisfying the condition  i) and  
ii) of Theorem 3.1.2 and since by Theorem 3.1.3 a Kannan mapping is 
almost contraction then Theorem 3.1.2 implies that   is bi-shadowing on   
provided that  +  = 3 1−  < 1 

that is  < 1/4 . Moreover, the values of    and   in (3.10) are obtained by 
substituting the values of    and    of (3.8) in (3.4).                                     □ 
Similar argument can be used to prove the next theorem. Since a Chtterjea 
mapping is almost contraction. 
Theorem 3.1.5 (Al-Badarneh, 2015 b): Let a continuous mapping  : →   
be Chtterjea map- ing satisfying the conditions  i)  and  ii)  of Theorem 
(3.1.2). Then   is bi- shadowing on   with respect to the class  ( ) 
provided that  < 1/4 and with parameters   and   given by:                    = 2− 2 1− 4       and      = 1− 4 1−   . 
Definition 3.1.4 (Reich, 1971): A mapping  :  →   is called Reich 
mapping if there exist constants  ,  ,  ≥ 0 with  +  +  < 1 such that    ( ),  ( ) ≤   ( ,  ) +     ,  ( ) +     ,  ( ) , 
 for all  ,      .  
Theorem 3.1.6 (Pacurar M. and Pacurar R.V., 2007): Let ( ,  ) be a metric 
space and  : →   a Reich mapping with constants  ,  ,  ≥ 0 such that  +  +  < 1. Then   is almost contraction with constants 

                       =  +  1−      and     =  +  1−  .                                        (3.11) 

 



Theorem 3.1.7 (Al-Badarneh, 2015 b): Let ( ,  ) be a metric space and let   : →   be a    continuous Reich mapping with constants  ,  ,  ≥ 0 such 
that  +  +  < 1 and assume that the condition  i)  and  ii)  of Theorem 
3.1.2 are satisfied. Then   is bi-shadowing on   with respect to the class  ( ) provided that  + 2 + 2 < 1 and with parameters   and   given by: 
                = 2− 2 1−  − 2 − 2     and     = 1−  − 2 − 2 1−  .                       (3.12) 

Proof: Let  : →   be a continuous Reich mapping with constants  ,  ,  ≥ 0 such that  +  +  < 1. It follows by Theorem 3.1.6 that   is 
almost contraction with constant   and   given in (3.11). Thus Theorem 
3.1.2 implies that   is bi-shadowing on   with respect to the class  ( ) 
provided that  +  =  + 2 +  1−  < 1 

that is  + 2 + 2 < 1. The value of   and   in (3.12) can be obtained 
easily by substituting the values of   and   of (3.11) in (3.4).                      □ 
One of the most general contraction condition has been obtained by (Ciric, 
1974): there exists  0 < ℎ < 1 such that 

                       ( ),  ( ) ≤ ℎ  ( , )    for all  ,     ,                        (3.13) 
where 
           ( ,  ) = max{ ( , ), ( ,  ( )), ( ,  ( )), ( ,  ( )), ( ,  ( ))}. 

A mapping  : →   satisfying (3.13) is commonly called quasi 
contraction.  
Theorem 3.1.8 (Berinda, 2004): Any quasi-contraction with 0 < ℎ < 1/2 is 
an almost contraction. 
By combining Theorems 3.1.8 and 3.1.2 we have the following result. 
Theorem 3.1.9 (Al-Badarneh, 2015 a): Let a continuous mapping  : →   
be quasi-contraction with 0 < ℎ < 1/2 and assume that the conditions i) and 
ii) of Theorem 3.1.2 are satisfied. Then   is bi-shadowing on   with respect 
to the class  ( ). 
Proof: For a continuous mapping  : →  , Theorem 3.1.8 implies that   is 
almost contraction with appropriate value   and L. It follows from the proof 
of  Proposition 3 of (Berinda, 2004) that the values of   and L depend on 
what the maximum in (3.13) is. For example, if  ( , ) =    ,  ( ) , then 



   ( ),  ( ) ≤ ℎ1− ℎ  ( ,  ) + ℎ1− ℎ    ,  ( ) . 
Thus  =  =      and since the condition i) and ii) of Theorem (3.1.2) are 
assumed to be satisfied, Theorem 3.1.2 implies that   is bi-shadowing with 
respect to the class  ( ) provided that  +  =      < 1, that is ℎ < 1/3. In 
this case, the values of   and   are  = 2(1− ℎ)1− 3ℎ     and     = 1− 3ℎ1− ℎ . 
The other cases are treated similarly. The proof is complete.                 □ 
Definition3.1.5 (Ciric, 1971): A mapping  : →   is called generalised 
contraction, or Ciric contraction, if there exist nonnegative constants  ,  ,  
and   with  +  +  + 2 < 1 such that    ( ),  ( ) ≤   ( ,  ) +     ,  ( ) +     ,  ( )  
                                                                                  +     ,  ( ) +    ,  ( )   
for all  ,      .  
Lemma 3.1.1 (Al-Badarneh, 2015 a): Let  : →   be a generalised 
contraction (Ciric) with  +  +  + 2 < 1. Then   is almost contraction 
with constants                       =  +  +  1−  −      and     =  +  + 2 1−  −                             
Proof:    ( ),  ( ) ≤   ( ,  ) +     ,  ( ) +     ,  ( )  

                                                                                   +    ,  ( ) +     ,  ( )  
 ≤   ( ,  ) +    ( , ) +    ,  ( )  +    ( ,  ) +    ,  ( )                     +    ,  ( ) +     ,  ( )  

 = ( +  +  ) ( , ) + ( +  )   ,  ( ) + ( +  )   ,  ( )   ≤  ( +  +  ) ( , ) + ( +  )   ,  ( ) + ( +  )   ( ),  ( )  +( +  )   ,  ( )  = ( +  +  ) ( , ) + ( +  + 2 )   ,  ( ) + ( +  )   ( ),  ( ) . 
It follows that    ( ),  ( ) ≤  +  +  1−  −   ( , ) +  +  + 2 1 −  −     ,  ( ) . 



If we take   =  +  +  1−  −      and     =  +  + 2 1 −  −  , 
then clearly,  ≥ 0 and  < 1 since by assumption  +  +  + 2 < 1. 
Hence   is almost contraction.                                                                      □ 
By using this Lemma and Theorem 3.1.2 we have the following result. 
Theorem 3.1.10: (Al-Badarneh, 2015 a): Let  a continuous mapping  : →   be a generalised (Ciric) contraction and assume that the conditions 
i) and ii) of Theorem 3.1.2 are satisfied. Then   is bi-shadowing on   with 
respect to the class  ( ) provided that  + 2 + 2 + 4 < 1 and with 
positive parameters: 
  = 2(1−  −  )1− 2 − 4 −  − 2     and     = 1− 2 − 4 −  − 2 1−  −  . 
Proof: If    is a generalised contraction such that the condition i) and ii) of 
Theorem 3.1.2 are satisfied and since by Lemma 3.1.1 a generalised 
contraction is almost contraction, Theorem 3.1.2 implies that   is bi-
shadowing on   with respect to the class  ( ) for the values of   and L 
satisfying the relation  +  =  + 2 +  + 3 1−  −  < 1, 
since  + 2 + 2 + 4 < 1.                                                                         □ 
 
3.2 More Results on Bi-Shadowing 
In this section, we introduce  more results on bi-shadowing and suggest a 
definition of new property of bi-shadowing. 
Let ( ,  ) and ( ,  ) be two metric spaces and define a metric d on  ×   
by   (  ,  ), (  ,   ) = max{  (  ,  ),   (  ,  )}  
for  (  ,  ), (  ,  )    ×  . 
Let  : →   and  : →   be continuous mappings, and let  ×   be a map 
on   ×   defined by ( ×  )( , ) =   ( ), ( ) . 
Theorem 3.2.1: If   and   have the bi-shadowing property with respect to 
the comparison classes  ( ) and  ( ) with positive parameters   and  , 
then  ×   has the bi-shadowing property with respect to the class  ( ) × ( )  with the same parameters    and  . 



Proof: Let {(  ,  )}     be a  -pseudo trajectory of the map  ×  , with 0 ≤  ≤  ,  and let  ( ) ×  ( )    ( ) ×  ( )  satisfying   + sup( , )  ×   ( ×  )( , ), ( ×  )( , ) ≤  .  

Since {(  ,  )}     is a  -pseudo trajectory of the map  ×  , then we have  

         ( ×  )(  ,  ), (    ,    ) =     (  ), (  ) , (    ,    )  

                                                     = max {  ( (  ),     ),  ( (  ),    ))}   

                                                     <  . 
Thus,   ( (  ),     ) <   and   ( (  ),    ) <  , which implies that both 
{  }     and {  }     are  -pseudo trajectories of    and   respectively. But   
and   have the bi-shadowing property, hence for any      ( ) and     ( ) 
satisfying 

              + sup        ( ), ( ) ≤         

and  
              + sup        ( ), ( ) ≤  , 

there exist  true trajectories {  }     of   and {  }     of    such that 
 
                         (  ,  ) ≤  ( + sup      ( ( ), ( )))                          (3.14)   

 and 
                        (  ,   ) ≤  ( + sup      ( ( ), ( ))).                           (3.15) 

for       . 

Without lost of generality, we may assume that sup        ( ), ( ) > sup        ( ), ( ) , 
then for       , we have the following three cases: 
1) For the values of       + for which   (  ,  ) >   (  ,   ), and using 
(3.14), we have   (  ,  ), (  ,   ) = max{  (  ,  ),  (  ,   )}  
                                                         ≤   ( + sup      ( ( ), ( ))), 

so, for every    ,     we have  



  (  ,  ), (  ,   ) ≤   ( + sup       ( ( ), ( ))) 

                                =  ( + max{sup      ( ( ),  ( )), sup      ( ( ),  ( ))}) 

                                =  ( + sup   ,   (max{  ( ( ),  ( )),   ( ( ),  ( ))}))  

                                 =   ( + sup( , )  ×  (( ×  )( ,  ), ( ×  )( ,  ))). 

Note that {(  ,   )}    is a true trajectory of  ×   since ( ×  )(  ,   ) =   (  ),  (  ) = (    ,     ). 
 

2) For the values of       + for which    (  ,   ) <   (  ,   ), and by using 
(3.15), we have   (  ,   ), (  ,   ) = max{  (  ,   ),   (  ,   )} 

                                                         ≤   ( + sup      ( ( ),  ( ))) 

                                      ≤   ( + sup      ( ( ),  ( ))). 

From the argument of case (1) above we obtain   (  ,   ), (  ,   ) ≤   ( + sup( , )  ×  (( ×  )( ,  ), ( ×  )( ,  ))). 

3) For the values of       + for which   (  ,   ) =   (  ,   ),  we have the 
same result in (1) and (2).  
By combining the three cases, we have  ((  ,   ), (  ,   )) ≤   ( + sup( , )  ×  (( ×  )( , ), ( ×  )( , ))), 

for all   ∈   .  
which mean that  ×   has the bi-shadowing property.                                □ 
Theorem 3.2.2: Let  : →   and  : →   be continuous mappings. If  ×   has the bi-shadowing property with respect to the comparison class  ( ) ×  ( )  and positive parameters   and  , then at least one of the 
mappings   and   has the bi-shadowing property on the class  ( ) and  ( ) respectively with the same parameters   and  . 
Proof: Let {  }     and {  }     be  -pseudo trajectories of    and   
respectively, with 0 ≤  ≤  ,  and let      ( ) and     ( ) satisfies 



 + sup        ( ), ( ) ≤   

 and   + sup        ( ), ( ) ≤  . 

Then 

       ( ×  )(  ,  ), (    ,    ) =  (( (  ), (  )), (    ,    )) 

                                                        = max{  ( (  ),     ),  ( (  ),    )} <  . 
So,   ( ×  )(  ,  ), (    ,    ) <   and the sequence  {(  ,   )}     is a  -
pseudo trajectory of   ×  . 
But  ×   has the bi-shadowing property, and hence any map  ×      ( ) ×  ( ) satisfying  + sup( , )  ×   ( ×  )( , ), ( ×  )( , ) ≤  , 

there exists a true trajectory  {(  ,   )}     of   ×   such that   (  ,  ), (  ,   ) ≤   ( + sup( , )  ×  (( ×  )( , ), ( ×  )( , ))). 

So, for every    ,      we have 
   max{  (  ,  ),   (  ,   )} ≤  ( + sup( , )  ×  (( ×  )( , ), ( ×  )( , ))) 

                                    =   ( + sup   ,   (max{  ( ( ), ( )),   ( ( ),  ( ))})) 

                                    =  ( + max{sup      ( ( ),  ( )), sup      ( ( ),  ( ))}). 

Now, we have three cases: 
1) If sup        ( ),  ( ) > sup        ( ),  ( ) , then we have   (  ,   ) ≤  ( + sup      ( ( ),  ( ))) and hence   has the bi-shadowing 

property with respect to  ( ). 
2) If  sup       ( ),  ( ) < sup        ( ),  ( ) , then we have   (  ,   ) ≤  ( + sup     ( ( ), ( ))) and hence   has the bi-shadowing 

property with respect to  ( ). 
3) If  sup        ( ), ( ) = sup        ( ), ( ) , then we have  



  (  ,  ) ≤  ( + sup      ( ( ), ( ))) 

 and 
                                  (  ,   ) ≤  ( + sup      ( ( ), ( )))  

and hence both   and   have the bi-shadowing property. 
Note that both {  }    and {  }    are true trajectories of   and   
respectively since 

                     (  ), (  ) = ( ×  )(  ,   ) = (    ,     ).                          □ 

We now introduce the following definition of a bi-shadowing property for a 
pair of systems, which we call it mutually bi-shadowing. 
Definition 3.2.1: Let  : →   and  : →   be continuous mappings. The 
pair of systems  ( , ) is called mutually bi-shadowing with respect to the 
positive parameters   ,   and comparison classes  ( ) and  ( ) of   and   
respectively, if for any given  -pseudo trajectories {  }     and {  }     for   
and   respectively, and for any      ( ) and     ( ) satisfies 

 
  + sup        ( ), ( ) ≤      

 and   
  + sup        ( ), ( ) ≤  , 

there exist true trajectories {  }     of   and {  }     of    such that   (  ,  ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}) 

 and   (  ,   ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}) 

for every    ,    . 
Now, in the context of this new definition of  bi-shadowing for a pair of 
systems we have the following result, which is an improved version of 
Theorem 3.2.2. 
Theorem 3.2.3: Let  : →   and  : →   be continuous mappings. Then 
the pair of systems  ( , ) is mutually bi-shadowing with respect to the 
positive parameters   ,   and comparison classes  ( ) and  ( ) of   and   
respectively, iff  ×   has the bi-shadowing property with respect to the 
comparison class  ( ) ×  ( )  and the same parameters   and  . 



Proof: Let {(  ,  )}     be a  -pseudo trajectory of the map  ×  , with 0 ≤  ≤  ,  and let  ( ) ×  ( )    ( ) ×  ( ) be satisfying   + sup( , )  ×   ( ×  )( , ), ( ×  )( , ) ≤  . 

Thus, both {  }     and {  }     are  -pseudo trajectories of    and   respe- 
ctively. But the pair of systems ( , ) is mutually bi-shadowing, hence for 
any      ( ) and     ( ) be satisfying 

                                    + sup        ( ), ( ) ≤        

 and  
                                   + sup        ( ), ( ) ≤  , 

there exists true trajectory {  }     of   and {  }     of    such that    (  ,  ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}) 

and   (  ,   ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}). 

Thus, from above we get for every    ,     

    max{  (  ,  ),  (  ,   )} 
                                                 ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}) 

                                     =   ( + sup   ,   (max{  ( ( ), ( )),   ( ( ), ( ))})) 

                                     =  ( + sup( , )  ×  (( ×  )( , ), ( ×  )( , ))). 

and hence   (  ,  ), (  ,   ) <   ( + sup( , )  ×  (( ×  )( , ), ( ×  )( , ))). 

This shows that  ×   has the bi-shadowing property with respect to the 
comparison class  ( ) ×  ( )  and the same parameters   and  . 
Conversely, Let {  }     and {  }     be  -pseudo trajectories of    and   
respectively, with 0 ≤  ≤  ,  and let      ( ) and     ( ) be satisfying 

                                   + sup        ( ), ( ) ≤       

 and          



                                  + sup        ( ), ( ) ≤  . 

Thus, {(  ,  )}     is a  -pseudo trajectory of   ×  . But  ×   has the bi- 
shadowing property, and hence for any map  ×      ( ) ×  ( ) satisfying  + sup( , )  ×   ( ×  )( , ), ( ×  )( ,  ) ≤   

there exists a true trajectory  {(  ,   )}     of   ×   such that 

      (  ,  ), (  ,   ) ≤   ( + sup( , )  ×  (( ×  )( , ), ( ×  )( ,  ))). 
So, we have 
     max{  (  ,  ),  (  ,   )} ≤ 

                     ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}) 

which implies that 

            (  ,  ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))})  

and 
             (  ,   ) ≤  ( + max{sup      ( ( ), ( )), sup      ( ( ), ( ))}). 

Hence, the pair of systems  ( , ) is mutually bi-shadowing.                       □ 
It is evident that Definition 3.2.1 implies the following two results: 
(1) If both   and   have the bi-shadowing property, then the pair of systems   ( , ) is mutually bi-shadowing. 
(2) If the pair of systems  ( , ) is mutually bi-shadowing, then at least   or   has the bi-shadowing property. 
Theorem 3.2.4: Let ( ,  ) and ( ,  ) be two metric spaces and let  : →   and  : →   be continuous mappings topologically conjugate by ℎ:  →  . If there exists    ≥ 1 such that 
           (  ,   ) ≤    ℎ(  ),ℎ(  ) ≤     (  ,  )   for all   ,            (3.16)       
Then we have 
(1) If  f has the bi-shadowing property with respect to the comparison class  ( ) and positive parameters  ,  , then   has the bi-shadowing property 
with respect to the comparison class  ( ) and positive parameters   ,   
provided that  ( ) and  ( ) are topologically conjugate by ℎ in the sense 
that individual mappings in one class are topologically conjugate to a 
mapping in the other class by ℎ. 



(2) If   has the bi-shadowing property with respect to the comparison class  ( ) and positive parameters  ,   , then f has the bi-shadowing property 
with respect to the comparison class   ( ) and positive parameters   ,   
provided that  ( ) and  ( ) are topologically conjugate by ℎ in the sense 
that individual mappings in one class are topologically conjugate to a 
mapping in the other class by ℎ. 
Proof: (1) Let {  }     be  -pseudo trajectory of    with 0 ≤  ≤  , which 
implies that   ( (  ),    ) <  , 
and let      ( ) satisfy 
                                      + sup        ( ), ( ) ≤  .                             (3.17) 

Note that condition  (3.16) is equivalent to the following condition     ℎ  (  ),ℎ  (  ) ≤   (  ,  ) ≤      ℎ  (  ),ℎ  (  )  for all   ,      .                                                                                      (3.18) 
 Now,     (ℎ  (  )),ℎ  (    ) =    ℎ    (  ) ,ℎ  (    )  

                           ≤   ( (  ),    ) 
     <   

hence   = ℎ  (  ) is a  -pseudo trajectory of   . Let       and      ( ) 
then using (3.16) and the conjugacy ℎ we obtain     ( ), ( ) ≤    ℎ  ( ) ,ℎ  ( )   

                           =      ℎ( ) ,  ℎ( )   

               =     ( ), ( ) . 
where   = ℎ( ). 
 
So, 
                         ( ), ( ) ≤     ( ), ( )          ∀   ,  = ℎ( ), 
hence  
                       sup        ( ), ( ) ≤ sup        ( ), ( ) .                    (3.19) 

From (3.17) and (3.19) we get for any      ( ), where  = ℎ  ○  ○ ℎ that  



 + sup        ( ), ( ) ≤  . 

 But   has the bi-shadowing property. Thus there exist a true trajectory 
{  }     of    such that   (  ,  ) ≤  ( + sup      ( ( ), ( ))) 

                                                  ≤  ( + sup      ( ( ), ( ))). 

Thus, using the second part of (3.16), we obtain 
    ℎ(  ),ℎ(  ) ≤    ( + sup      ( ( ), ( ))) 

hence 
           ,ℎ(  ) ≤    ( + sup      ( ( ), ( ))). 

Note that ℎ(  ) =    is a true trajectory of   , since  (  ) =   ℎ(  ) = ℎ  (  ) = ℎ(    ) =     . 
This shows that   has the bi-shadowing property with respect to  ( ) and 
with positive parameters   ,  . 
 (2) Let {  }     be  -pseudo trajectory of    with 0 ≤  ≤  , which implies 
that   ( (  ),     ) <  , 
and let      ( ) satisfy 

                                      + sup        ( ), ( ) ≤  .                             (3.20) 

 
Now,      ℎ(  ) ,ℎ(    ) =    ℎ  (  ) ,ℎ(    )  

                            ≤     ( (  ),     ) 
        ≤     

hence    = ℎ(  ) is a  λ -pseudo trajectory of   . Now Let       and      ( ), then using (3.18) we have 

                         ( ), ( ) ≤      ℎ    ( ) ,ℎ    ( )   

                                                 =        ℎ  ( ) ,  ℎ  ( )   

                                                 =       ( ), ( )  



where  = ℎ  ( ). 
So, 
                   ( ), ( ) ≤       ( ), ( ) ,       ∀      and   = ℎ  ( ) 

hence 
                   sup        ( ), ( ) ≤   sup        ( ), ( ) .                       (3.21) 

From (3.20) and (3.21) we get for any      ( ), where  = ℎ ○  ○ℎ    that   + sup        ( ), ( ) ≤   . 
But   has the bi-shadowing property. Thus there exist a true trajectory 
{  }    of    such that   (  ,   ) ≤  (  + sup      ( ( ), ( ))) 

                                                ≤  (  +   sup      ( ( ), ( ))) 

                                               =   ( + sup      ( ( ), ( ))). 

Thus, using (3.17), we obtain    ℎ  (  ),ℎ  (  ) ≤    ( + sup      ( ( ), ( ))) 

hence 
                            ,ℎ  (  ) ≤    ( + sup      ( ( ), ( ))). 

 
Note that ℎ  (  ) =    is a true trajectory of   , since  (  ) =   ℎ  (  ) = ℎ    (  ) = ℎ  (    ) =     . 
This shows that   has the bi-shadowing property with respect to  ( ) and 
with positive parameters    and  . 
Thus, the proof of the theorem is complete.                                            □ 
Remark 3.2.1: In the previous theorem if   = 1, then we conclude that  
the map  : →   has the bi-shadowing property with respect to positive 
parameters   and   iff   : →    has the bi-shadowing property with 
respect to the same parameters. 
 
 
 



CHAPTER FOUR 
Conclusions and Recommendations 

 
In this work, we studied the asymptotic behavior of  discrete dynamical 
system generated by a continuous mappings on a metric space. We 
established some of results regarding the concept of shadowing property 
and generalized these results in the context of bi-shadowing property. We 
discuss the relationship of bi-shadowing property between the product 
system and its subsystems. Also, we introduce a new definition of a bi-
shadowing property for a pair of systems, which we call it mutually bi-
shadowing. In the end it was shown that the bi-shadowing property is 
invariant under topological conjugacy with certain conditions. 
Based in our work, the results that we have obtained can be extended to a 
nonautonomous case of dynamical system, we may deal with this result in 
the future. 
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